$12^{2}_{305}$ - Minimal pinning sets
Pinning sets for 12^2_305
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^2_305
Pinning data
Pinning number of this multiloop: 5
Total number of pinning sets: 224
of which optimal: 2
of which minimal: 2
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 3.03452
on average over minimal pinning sets: 2.4
on average over optimal pinning sets: 2.4
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 2, 4, 7, 12}
5
[2, 2, 2, 3, 3]
2.40
B (optimal)
•
{1, 2, 5, 7, 11}
5
[2, 2, 2, 3, 3]
2.40
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
5
2
0
0
2.4
6
0
0
14
2.67
7
0
0
41
2.86
8
0
0
65
3.02
9
0
0
60
3.13
10
0
0
32
3.22
11
0
0
9
3.29
12
0
0
1
3.33
Total
2
0
222
Other information about this multiloop
Properties
Region degree sequence: [2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,3,4],[0,4,5,2],[0,1,5,6],[0,6,6,7],[0,7,5,1],[1,4,8,2],[2,8,3,3],[3,9,9,4],[5,9,9,6],[7,8,8,7]]
PD code (use to draw this multiloop with SnapPy): [[4,20,1,5],[5,16,6,17],[17,3,18,4],[19,10,20,11],[1,15,2,16],[6,2,7,3],[18,12,19,11],[14,9,15,10],[7,13,8,12],[8,13,9,14]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (5,4,-6,-1)(16,1,-17,-2)(13,8,-14,-9)(18,9,-19,-10)(10,17,-11,-18)(11,6,-12,-7)(7,12,-8,-13)(3,14,-4,-15)(20,15,-5,-16)(2,19,-3,-20)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,16,-5)(-2,-20,-16)(-3,-15,20)(-4,5,15)(-6,11,17,1)(-7,-13,-9,18,-11)(-8,13)(-10,-18)(-12,7)(-14,3,19,9)(-17,10,-19,2)(4,14,8,12,6)
Multiloop annotated with half-edges
12^2_305 annotated with half-edges